dehydration of crystalline powders of the hydrate showed, as expected, that the water content of the crystal is strongly bound. Several hours of heating at a temperature of about 750 °C. were required to entirely convert a sample to the anhydrous form, which was identified by means of powder diffraction patterns. Additional information was obtained from a differential thermal analysis experiment, which gave evidence that the water content is lost in two stages, the first in the range of temperature between 200 and 300 °C., and the second between 600 and 700 °C. Further data are required for an understanding of the process. However, an explanation is suggested by the structural arrangement. It may be that, at the lower temperature, O_{w2} is expelled from its channels as H_2O_1 , leaving a framework structure of $In(OH)HPO_4$. At the higher temperature, the framework collapses to free the second H₂O, and to recrystallize as InPO₄.

It is of interest to recall that $InPO_4$ and $TIPO_4$ are isostructural with VCrO₄ and CuCrO₄ (Brandt, 1943) and also with an unstable form of CrPO₄ (Sullivan & McMurdie, 1952), this on the basis of comparisons with their published *d*-values. The anhydrous structure type is unrelated to the known forms of AlPO₄ or FePO₄. However, the only crystals which could be found to be identifiable as isotypes of InPO₄.2 H₂O, TIPO₄.2 H₂O and TlAsO₄.2 H₂O proved to be three minerals, phosphates and arsenates of Fe and Al. They are scorodite, FeAsO₄.2 H₂O (Hiriyama & Sakurai, 1949); strengite, FePO₄.2 H₂O (Kokkorros, 1938) and very probably mansfield ite, $\rm Al_2O_3.As_2O_5.$ 4 $\rm H_2O$ (Allen, Fahey & Axelrod, 1948).

The author is grateful to two former associates, Alvin Perloff and Gordon Burley, of the National Bureau of Standards, for valued assistance in crystal growing and the accumulation of data during the early stages of this work. It is also a pleasure to thank Prof. Ray Pepinsky for the use of X-rac at the Pennsylvania State College.

This work has been supported by the National Science Foundation.

References

- Allen, V. T., Fahey, J. J. & Axelrod, M. (1948). Amer. Min. 33, 126.
- BRANDT, K. (1943). Ark. Kemi. Min. Geol. A, 17, No. 6.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- HIRIYAMA, K. & SAKURAI, K. (1949). X-rays, 5, 85. (Structure Report (1949), 12, 251.)
- KOKKOROS, P. (1938). Prakt. Akad. Athen. 13, 337.
- MOONEY, R. C. L. (1956). Acta Cryst. 9, 113.
- ROGERS, D. & MOFFATT, R. (1956). Acta Cryst. 9, 1037.
- SULLIVAN, B. & MCMURDIE, H. F. (1952). J. Res. Nat. Bur. Stand. Wash. 48, 159.
- WELLS, A. F. (1950). Structural Inorganic Chemistry, 2nd ed. Oxford: Clarendon Press.
- Tables of Interatomic Distances in Molecules and Ions (1958). SUTTON, L. E., Editor, London, The Chemical Society, Burlington House, W. I.

Acta Cryst. (1961). 14, 1146

The Crystal Structure of 2-Amino-Ethanol Phosphate

By Joseph Kraut

Department of Biochemistry, University of Washington, Seattle, Washington, U.S.A.

(Received 12 January 1961)

The crystal structure of 2-amino-ethanol phosphate has been solved by Patterson superpositions and refined in three dimensions by difference syntheses and least-squares. The refined parameters include hydrogen positions and isotropic temperature factors, as well as heavy atom positions and anisotropic temperature factors. The refinement was based on 1239 reflections, and was taken to a final R factor of 0.065 for 1000 observed reflections.

Bond lengths and angles are normal. An extensive system of hydrogen bonds is found, the arrangement of which further supports the belief that at least two of the oxygens of the phosphate group are attached by double bonds.

Introduction

2-amino-ethanol phosphate,

$$NH_3^+-CH_2-CH_2-O-PO_3H^-$$
,

is a moiety of the brain lipid phosphatidyl ethanolamine, and is also found free in brain tissue. This study of its structure was undertaken for several reasons. First, it provided a conveniently small, though biochemically important molecule with which to acquire initial experience in the application of automated vector-coincidence methods. A long range study of the possibility of using vector coincidence as an essentially automatic structure-solving tool is being undertaken in this laboratory. Second, there is no accurate structural information available on the phosphoric acid monoester group. Finally, it was presumed that a zwitterionic compound such as this would contain an interesting hydrogen-bonding system.

Experimental

A sample of 2-amino-ethanol phosphate was purchased from the California Corporation for Biochemical Research and recrystallized from ethanol-water as long prisms. The unit-cell parameters and space group were established by precession photography: space group $P2_1/c$,

$$a = 9.04 \pm 0.02, \ b = 7.75 \pm 0.02, \ c = 8.86 \pm 0.02, \\ \beta = 102^{\circ} \ 27' \pm 8'.$$

The prism axis was found to correspond to the unitcell c axis. The density measured by flotation was 1.562 and the calculated density 1.546 g.cm.⁻¹, assuming four molecules per unit cell.

Intensity data were collected by planimetering densitometer tracings of reflections on two sets of equi-inclination Weissenberg photographs taken with Cu $K\alpha$ radiation. The first set consisted of reciprocal lattice levels of constant l, from 0 to 7, obtained with a crystal measuring approximately $0.10 \times 0.13 \times 0.13$ mm., on a linearly integrating Nonius camera. The second set of photographs contained reciprocal lattice levels of constant k, from 0 to 3, from a crystal measuring approximately $0.26 \times 0.51 \times 0.43$ mm. and were taken with a non-integrating Supper camera. Corrections for absorption were not made. All data were put on a common scale and a single scale factor was used throughout the refinement. Of the total of about 1500 reflections within the Cu $K\alpha$ limit, 1239 were examined and of these 233 were too weak to be observed. Six reflections were found to exhibit severe extinction and the corresponding $\varDelta F$ terms were consequently omitted from difference-Fourier and least-squares computations.

Determination of the structure

A sharpened, origin-removed three-dimensional Patterson was prepared and the approximate coordinates of the phosphorus atom were readily determined by inspection. The four term minimum function based on these coordinates was then computed from the Patterson. That is, if M(u, v, w) represents the minimum function, P(u, v, w) the Patterson function and x, y and z the phosphorus atom coordinates, then

$$\begin{array}{l} M(u, v, w) \\ = \min \left\{ P(u-x, v-y, w-z), \ P(u+x, v+y, w+z), \\ P(u+x, v-y-\frac{1}{2}, w+z-\frac{1}{2}), \\ P(u-x, v+y-\frac{1}{2}, w-z-\frac{1}{2}) \right\}. \end{array}$$

It is not difficult to show that, since the set of

translations imposed on the Patterson function is related by the symmetry elements of space group $P2_1/c$, the resulting function M(u, v, w) must have the symmetry of that space group. This function should, furthermore, reproduce the structure of the crystal, albeit somewhat obscured by the occurrence of fortuitously overlapping Patterson peaks. A threedimensional model of the superposition map was constructed using the ten highest peaks in the asymmetric unit; it was a relatively simple matter then to pick out the eight peaks representing the structure.

An F_c calculation with these initial atomic positions gave R=0.27. Comparison with the final set of refined coordinates shows that most of the atoms had been placed within 0.1 Å, the largest deviation having been in the position of 05, which was 0.17 Å in error.

Refinement

The following atomic scattering factors were used throughout the refinement: carbon, nitrogen and oxygen of Berghuis *et al.* (1955), hydrogen of McWeeny (1951) and phosphorus of Viervoll & Øgrim (1949).

One cycle of refinement based upon coordinate shifts calculated from a three-dimensional F_o synthesis decreased R to 0.20. At this point an attempt was made to refine the structure further by means of ΔF maps of the (010) and (001) projections, and R was reduced to 0.12 and 0.14 for these zones before it became necessary to take account of anisotropy of thermal motion. However, a recalculation of F_c for the full three-dimensional data, using the 'refined' parameters, gave an overall R of 0.21; i.e., R was increased by 0.01 by refinement of the projections!

Refinement in three dimensions was then resumed. Six cycles of three-dimensional ΔF syntheses were required to reduce R to 0.09, using individual anisotropic temperature factors. Hydrogen atoms were now visible in the difference map, as well as indications of further adjustments required in the thermal parameters. Fortunately, however, at this juncture an IBM-709 was installed at the University of Washington's Research Computer Laboratory.

With the aid of a compatibility program, Busing & Levy's (1959) least-squares program ORXLS was adapted for the IBM-709. Least-squares refinement was based on the observed amplitudes, and a weighting scheme similar to Hughes' (1941) was used. That is, σ was taken to be either unity or F/20, whichever was larger. Two cycles were run on the heavy atom parameters; changes during the second cycle were negligible. Next, the heavy atoms were fixed and three cycles of refinement of the hydrogen parameters, with individual isotropic temperature factors, were computed.

The hydrogen parameters, initially taken from the last ΔF map, refined much less decisively than those for the heavier atoms, although the magnitudes of the changes did decrease with succeeding cycles.

Table 1. Positional parameters of heavy atoms and their estimated standard deviations

	x/a	$\sigma(x a)$	y/b	$\sigma(y/b)$	z/c	$\sigma(z/c)$
P1	0.2332	0.0001	0.0231	0.0001	0.1130	0.0001
O2	0.3201	0.0003	-0.0766	0.0004	0.1899	0.0005
O3	0.1686	0.0003	-0.0136	0.0005	-0.0549	0.0004
04	0.1063	0.0004	0.0023	0.0006	0.2058	0.0004
05	0.2865	0.0003	0.2189	0.0004	0.1333	0.0004
C6	0.1797	0.0006	0.3514	0.0007	0.0742	0.0006
C7	0.2641	0.0006	0.5206	0.0007	0.0708	0.0006
N8	0.3478	0.0004	0.5715	0.0005	0.2284	0.0004

Table 2. Thermal parameters of heavy atoms and their estimated standard deviations

eta as given here is defined by

$$T = \exp\left\{-10^{-4}\left(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl\right)\right\}$$

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
P1	028 ± 01	070 ± 02	058 ± 02	-006+01	-005+01	003 + 01
O2	045 ± 04	086 ± 07	181 ± 07	004 ± 04	-023 ± 04	022 + 05
O3	048 ± 03	163 ± 07	076 ± 04	-006 ± 04	015 ± 03	-040+04
04	064 ± 04	280 ± 11	064 ± 04	-037 ± 05	008 ± 03	022 ± 05
O5	065 ± 04	083 ± 06	102 ± 05	010 ± 04	-018 ± 03	001 ± 04
C6	088 ± 06	099 ± 09	110 ± 07	015 ± 06	-022 ± 05	-007 ± 06
C7	115 ± 07	091 ± 08	078 ± 06	005 ± 06	003 ± 05	007 ± 06
N8	045 ± 04	081 ± 07	076 ± 05	002 ± 04	009 ± 04	007 ± 04

Furthermore, the changes were not large in comparison with the relatively large estimated standard deviations. Finally, R decreased only by 0.01 during the entire process. These considerations cast some doubt on the authenticity of the apparent refinement. One circumstance, however, leads one to believe that the refinement of the hydrogen parameters was, in some degree, meaningful: although H13 was, through a cardpunching error, initially misplaced by 0.7 Å, the refinement procedure eventually returned it to the vicinity of its correct original position. Consequently, the final hydrogen parameters resulting from leastsquares refinement are presented in Table 3.

An additional cycle of least-squares refinement of the hydrogens was attempted after converting their isotropic temperature factors to the more general matrix form. At the conclusion of the computation, however, the resulting matrices failed to pass the test for positive-definiteness.

The final value of the estimated standard deviation of an observation of unit weight, calculated from the expression

$$(\Sigma w (\Delta F)^2/(m-n))^{\frac{1}{2}}$$

(Peterson & Levy, 1957) was 0.94. This is reasonably close to the ideal value of unity and indicates satis-

factory agreement between the weighting scheme used and the distribution of actual experimental error in the observations.

The refined parameters and their estimated standard deviations are given in Tables 1, 2 and 3. A final round of F_c calculations based on these parameters resulted in an R factor of 0.065, excluding unobserved reflections, or 0.076 if all reflections are included except the six showing extinction. Table 4 contains the observed and calculated structure factors.

Discussion

Fig. 1 shows a single molecule within the structure and the arrangement of hydrogen bonds between it and adjacent molecules. In terms of overall conformation, the molecule has assumed a *gauche* arrangement about the C6-C7 bond instead of the more usual zig-zag arrangement of linear molecules.

Tables 5 and 6 contain the bond distances and angles calculated from the parameters of Tables 1 and 3. The standard deviations were estimated using the simplifying assumption of isotropic error in the positional parameters and orthogonal coordinates. Equation (10) of Darlow (1960) was used to obtain the standard deviations of the bond angles.

Table 3. Hydrogen atom parameters and their estimated standard deviations

	x/a	$\sigma(x/a)$	y/b	$\sigma(y/b)$	z/c	$\sigma(z/c)$	B	$\sigma(B)$
$\mathbf{H9}$	0.281	0.006	0.552	0.007	0.288	0.006	1.2	1.1
H_{10}	0.366	0.006	0.695	0.007	0.220	0.006	0.9	1.0
HÌÌ	0.439	0.007	0.533	0.008	0.277	0.007	1.8	1.2
H12	0.012	0.011	-0.018	0.012	0.152	0.010	6.9	2.3
H13	0.098	0.008	0.404	0.011	0.154	0.009	4.1	1.9
H14	0.123	0.006	0.314	0.008	-0.035	0.006	1.2	1.1
$\mathbf{H}15$	0.168	0.007	0.597	0.009	0.028	0.007	$2 \cdot 0$	1.3
H16	0.335	0.001	0.516	0.008	0.006	0.007	1.7	$1 \cdot 2$

The phosphate group may be compared with that of the diester dibenzyl phosphoric acid, studied by Dunitz & Rollett (1956). The two groups show about the same deviations from tetrahedral symmetry. There is, however, a small but possible significant increase of approximately 0.03 Å in the lengths of the P-OC and the P-O bonds in 2-amino-ethanol phosphate.

The hydrogen bonding system about the phosphate group contains some interesting features: the two hydrogen bonds from O2 to N8' and N8'' respectively

Table 4. Observed and calculated structure factors

Reflections are grouped in subtables of constant l. Within each subtable the columns contain, respectively, h, k, $10F_o$ and $10F_c$. The symbol * denotes the minimum observable for reflections too weak to be observed, and x denotes reflections presumed to exhibit extinction and therefore not included in the refinement

0000001111111111111111111111112022222222	00000111111111222222222333333 0122
145 139 87 84 113 105- 213 200 156 151- 96 101- 96 101- 235 234- 356 353- 61 55- 169 165- 160 165- 164 102- 314 23 314 23 314 23 314 23- 314 103 312 316 54 32 324 28- 424 36 344 133- 355 326 240 240 240 240 240 249 106 97- 3310 212 2135 240 240 249 106 177 223 209- 247	774 1174 522 573 108 117 228 244- 174 185 343 376 157 151 339 34 103 192- 128 244- 173 192- 192 82 192 82 153 150- 246 275- 388 439- 389 439- 169 194- 288 23 49 28- 296 300 222 221- 136 124- 210 205
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

CRYSTAL STRUCTURE OF 2-AMINO-ETHANOL PHOSPHATE

Table 4 (cont.)

z 2 29 23 2 3 61 47- 2- 0 184 190- 2- 1 33 24- 2- 2 96 97- 2- 3 7* 1- 3 6 12* 12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-6 309 5- 2-7 309 6- 2-7 309 22 2-9 329 22 2-9 428 3 0 427 426 3 1 122 405 3 2 403 431 3 3 91 75 3 4 92 84	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4-32316 572924 519+12- 52147147 533327- 5-712822 9-1633	$\begin{array}{c} \underline{\ell} = \underline{8} \\ 3 & 1 & 103 & 96- \\ 3 & 2 & 103 & 96- \\ 3 & -3 & 199 & 7- \\ 3 & -1 & 199 & 116 \\ 3 & -1 & 92 & 96- \\ 3 & -3 & 899 & 66- \\ 3 & -3 & 899 & 66- \\ 4 & 2 & 139 & 144 \\ 4 & 1 & 34 & 29- \\ 4 & 2 & 127 & 11J \\ 4 & 3 & 119 & 108 \\ 4 & -0 & 221 & 225 \\ 4 & -1 & 47 & 45 \\ 4 & -1 & 21 & 225 \\ 4 & -2 & 22 & 225 \\ 4 & -2 & 2 & 225 \\ 4 & -2 & 2 & 225 \\ 4 & -2 & 2 & 225 \\ 4 & -2 & 2 & 225 \\ 4 & -2 & 2 & 225 \\ 4 & -2 & 2 & 2 & 225 \\ 4 & -2 & 2 & 2 & 225 \\ 4 & -2 & 2 & 2 & 2 \\ 4 & -2 & 2 & 2 & 2 \\ 4 & -2 & 2 & 2 & 2 \\ 4 & -2 & 2 & 2 & 2 \\ 4 & -2 & 2 & 2 & 2 \\ 4 & -2 & 2 & 2 & 2 \\ 4 & -2 & 2 & 2 & 2 \\ 4 & -2 & 2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & -2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\ 4 & -2 & -2 & 2 & 2 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5- 4 33 92 5- 5 115 108- 5- 6 69 56- 5- 7 115 120- 5- 8 26* 15- 6 0 230 224 6 1 93 89- 6 2 190 198 6 3 87 80 6 4 80 80		
8-2 130 126 8-3 26 19- 9-0 71 55 9-1 8*13 9-2 71 73 9-3 39 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
1-1 136 144 1-2 4* 41- 2-1 75 76	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 37 24 0 2 110 111 0 3 82 85- 0 4 119 125 0 6 117 116 0 7 20° 24- 1 1 134 103- 1 2 95 90-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} \underline{I} = \underline{11} \\ 2 - 2 \\ \overline{48} \\ 57 \\ 3 - 1 \\ 30 \\ 34 - 3 \\ 2 \\ 2 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} l = 9\\ 2 - 1 & 132\\ 2 - 2 & 56\\ 2 - 3 & 152\\ 3 & 157\\ 3 & 3 & 47\\ 4 & 1 & 136\\ 4 & 2 & 41\\ 3 & 6 & 4-1\\ 1 & 127\\ 1 & 46\\ 4 & 2 & 41\\ 3 & 6 & 4-1\\ 1 & 127\\ 1 & 46\\ 4 & 2 & 41\\ 3 & 6 & 4-1\\ 1 & 127\\ 1 & 46\\ 4 & 2 & 41\\ 3 & 6 & 4-1\\ 1 & 127\\ 1 & 46\\ 4 & 2 & 41\\ 4 & 3 & 6\\ 4 & -1 & 127\\ 1 & 46\\ 4 & -1 & 127\\ 1 & -1 & -127\\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4-1 48 50- 4-2 4* 42-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Fig. 1. The crystal structure of 2-amino-ethanol phosphate.

Table	5.	Bond	distances	and	angle	es for	covalent	bonds,
	C	and the	eir estimat	ed st	andar	rd dev	iations	

Bond	Distance	σ
P1-O2	1·493 Å	0.005 Å
P1–O3	1.503	0.005
P1-04	1.557	0.005
P1-05	1.591	0.005
O5-C6	1.429	0.007
C6-C7	1.521	0.008
C7–N8	1.491	0.007
N8-H9	0.90	0.06
N8-H10	0.98	0.06
N8-H11	0.90	0.06
O4–H12	0.86	0.09
C6-H13	1.20	0.08
C6-H14	1.01	0.06
C7-H15	1.05	0.06
C7-H16	0.95	0.06
Angle	Degrees	σ
O2-P1-O3	117·4°	0.2°
02–P1–O4	109.8	0.2
O2-P1-O5	103.9	0.2
O3-P1-O4	109.3	0.2
O3-P1-O5	109.6	0.2
04-P1-05	106.2	0.2
P1-O5-C6	118.7	0.3
O5-C6-C7	108.9	0.4
C6-C7-N8	111.4	0.3
O5-C6-H13	119	4
O5-C6-H14	108	3
C7-C6-H13	95	4
C7-C6-H14	113	3
H13-C6-H14	113	5
C6-C7-H15	97	4
C6-C7-H16	113	4
N8-C7-H15	114	4
N8-C7-H16	108	4
H15-C7-H16	115	5

Distance	σ
$2 \cdot 557$ Å	0.008 Å
2.761	0.008
2.748	0.008
$2 \cdot 802$	0.008
Degrees	σ
119·5°	0·2°
122.3	0.2
117.9	0.2
129.6	0.2
$123 \cdot 4$	0.2
106.7	0.2
117.6	0.2
110.9	0.2
108.1	0.2
$113 \cdot 2$	0.2
7	4
5	3
14	4
13	6
	Distance 2:557 Å 2:761 2:748 2:802 Degrees 119:5° 122:3 117:9 129:6 123:4 106:7 117:6 110:9 108:1 113:2 7 5 14 13

are almost exactly coplanar with the bond P1-O2 (mean deviation from least-squares plane, 0.03 Å) and the same is true of the hydrogen bonds from O3 to O4' and N8''' with respect to the bond P1-O3. Furthermore, the angles involved are those expected in a molecule containing a double bond. Assuming that the unshared electron pairs on the oxygens are concentrated in the hydrogen bond directions, and taken in conjunction with the already well established shortness of this type of bond in comparison with a normal P-O bond, this observation seems to leave little room for doubt that one is dealing with bonds having almost entirely double-bond character, as suggested by Pauling (1960) and others. It is also worth noting that the two planes are approximately at right angles; possibly, if this turns out to be generally true, it may have some bearing on the theory of this type of bond.

Other features of the structure are unexceptional. The covalent bond lengths and angles are within the normal range. The hydrogen bonds between the nitrogen and oxygens are of the usual length. Although the hydrogen bond from O4 to O3' is quite short, a similarly short bond has been found between oxygens of the phosphate group in phosphoric acid (2.53 Å) and in cytidylic acid \hat{b} (2.51 Å) by Furberg (1955) and by Alver & Furberg (1959). Hydrogen bonds of this length are also found between carboxyl groups (see Fuller, 1959).

As the last four entries of Table 6 show, the hydrogen atoms do not appear to lie exactly along the hydrogenbond directions, but in view of the large errors in estimating the angles of deviation, a great deal of significance cannot be attributed to these figures.

The parameters of the vibration ellipsoids have been calculated from the betas of Table 2, and are listed in Table 7. The quantities in the columns headed c_{ia} etc.

 Table 7. Magnitudes and direction cosines of the principal axes of the vibration ellipsoids

	Axis i	B_i	c_{ia}	c_{ib}	c_{ic}
$\mathbf{P1}$	1	2.09	-0.475	0.400	0.869
	2	1.64	0.079	0.908	-0.418
	3	0.76	0.876	0.133	0.264
O2	1	6.37	-0.406	0.128	0.971
	2	2.06	0.284	0.959	-0.010
	3	1.13	0.869	-0.253	0.229
$\mathbf{O3}$	1.	4.43	0.022	0.896	-0.437
	2	1.75	0.008	0.443	0.874
	3	1.47	-0.999	0.024	0.212
04	1	7.06	-0.227	0.966	0.166
	2	1.86	0.278	0.182	-0.981
	3	1.79	0.933	0.181	0.102
05	1	4.08	0.631	0.075	-0.890
	2	2.08	0.253	0.921	0.234
	3	1.44	0.734	-0.382	0.391
C6	1	4 ·81	0.708	0.180	-0.820
	2	$2 \cdot 38$	0.132	0.914	0.344
	3	1.83	0.693	-0.364	0.458
$\mathbf{C7}$	1	3.96	0.967	0.036	-0.454
	2	2.41	0.163	0.675	0.668
	3	2.00	0.195	-0.737	0.589
N8	1	2.41	-0.500	0.384	0.923
	2	1.89	0.193	0.912	-0.382
	3	1.38	0.961	-0.104	0.044

are the cosines of the angles between the *i*th ellipsoid axis and the *a*, *b* and *c* axes of the unit cell. The problem of transformation to principal axes has been discussed by Busing & Levy (1958), Waser (1955) and Rollett & Davies (1955). The extreme anisotropy of vibration of O2 and O4 should be noted, as well as the fact that O2 and O3 have their maximum vibration directions perpendicular to the hydrogen-bond planes mentioned above. Similarly, O4, O5, C6 and C7 are vibrating most strongly in directions generally perpendicular to the planes of their bonds, though not exactly so.

The hydrogen atom temperature factors, as seen from Table 3, do not differ significantly from zero, except possibly for H12. It was thought, at first, that H12 might be disordered between O4 and O3, and that as a consequence the least-squares program was attempting partially to 'erase' it be means of an artificially high temperature factor. However, no evidence for a partial hydrogen attached to O3 could be found in a final ΔF map. It was concluded that its large B is in fact due to the strong vibration of O4, to which H12 is attached.

I am grateful to Mr Henry Reed for his diligent work in collecting the intensity data, and to Dr James Stewart and Mr Darrell High for adapting the Busing-Levy least-squares program. Mr High also suggested the form of the expression given here for the symmetryreduced superposition.

Finally, I am indebted to Prof. Lyle H. Jensen for his continuing advice and encouragement.

This investigation was supported by research grant RG-4859 from the U.S. Public Health Service and by a grant from the Initiative 171 Section of the Research Comittee of the Graduate School of the University of Washington.

References

- ALVER, E. & FURBERG, S. (1959). Acta Chem. Scand. 13, 910.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- BUSING, W. R. & LEVY, H. A. (1958). Acta Cryst. 11, 450.
- BUSING, W. R. & LEVY, H. A. (1959). A Crystallographic Least Squares Refinement Program for the IBM 704, U.S. Atomic Energy Commission Publication ORNL 59-4-37.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- DUNITZ, J. D. & ROLLETT, J. S. (1956). Acta Cryst. 9, 327.
- FULLER, W. (1959). J. Phys. Chem. 63, 1705.
- FURBERG, S. (1955). Acta Chem. Scand. 9, 1557.
- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- McWEENY, R. (1951). Acta Cryst. 4, 513.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3rd ed., chapter 9. Ithaca: Cornell University Press.
- PETERSON, S. W. & LEVY, H. A. (1957). Acta Cryst. 10, 70.
- ROLLETT, J. S. & DAVIES, D. R. (1955). Acta Cryst. 8, 125.
- VIERVOLL, H. & ØGRIM, O. (1949). Acta Cryst. 2, 277. WASER, J. (1955). Acta Cryst. 8, 731.